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Musical ability has traditionally been studied as the product of a 
general-purpose cognitive architecture1,2, but a growing number of
studies are based on the premise that music is a cognitively unique and
evolutionary distinct faculty. Musical abilities are now studied as part
of a distinct mental module with its own procedures and knowledge
bases that are associated with dedicated and separate neural sub-
strates3. Thus, research concerning musical ability now tends to
adhere, more or less explicitly, to the concept of modularity of cogni-
tive functions as formulated by Fodor4,5.

After briefly describing what is currently meant by modularity, we
will illustrate how modularity shapes current thinking about how the
mind processes music, relying particularly on evidence from individu-
als with abnormalities of musical ability.

Modularity
According to Fodor4,5, mental modules have the following characteris-
tic properties: rapidity of operation, automaticity, domain-specificity,
informational encapsulation, neural specificity and innateness. Fodor
does not insist that any one of these properties is absolutely necessary
for the ascription of the term ‘modular’. For example, a system can be
modular even if not innate; that is why there is no difficulty in describ-
ing the reading system as a module, even though reading is clearly not
an innate ability5. So each of these properties might best be described
as a typical, rather than necessary or sufficient, feature of a modular
system.

Fodor does, however, consider one property to be more impor-
tant than the others: information encapsulation. By this he means
that the information processing within a mental module is immune
from influence by the ‘central system’—a large and slowly operating 
encyclopedic-knowledge system involved in high-level cognitive
operations, such as problem solving or belief evaluation. Our view6

is that domain-specificity is an equally important property: it would
be very odd to describe some system as a module if its operation
were not specific to some restricted domain of input or output.
Hence we consider domain-specificity to be not only an essential

but necessary property for a processing system to be considered
modular.

It is also important to realize that a module can be composed of
smaller processing subsystems that can themselves be referred to as
modules. For example, the language module contains component lex-
ical and phonetic-processor modules.

To claim that there is a music-processing module is to claim that
there is a mental information processing system whose operation is
specific to the processing of music. That system may contain smaller
modules whose processing domains may also be restricted to particu-
lar aspects of music. The possibility that such a cognitive architecture
for music processing exists has been entertained for more than a
decade4,7–9.

Even if the human mind does contain a music module, it is conceiv-
able that this module could lack the property of neural specificity, or
neuroanatomical separability. For example, the neural substrate for
music processing might overlap with that used for processing other
complex patterns, such as speech sounds. In this case, brain damage
would never affect musical abilities while sparing all other aspects of
cognition (particularly auditory processing outside the domain of
music). If, on the other hand, the putative music module does possess
the property of neural specificity, then we should expect to find people
in whom brain damage has selectively affected musical abilities. Many
such people have been found.

A module for music processing
Support for the existence of a music-processing module can be found
in reports of selective impairments in music recognition abilities after
brain damage (Table 1). Such patients can no longer recognize
melodies (presented without words) that were highly familiar to them
before the onset of their brain damage. In contrast, they are normal at
recognizing spoken lyrics (and spoken words in general), familiar
voices and other environmental sounds (such as animal cries, traffic
noises and human vocal sounds). This condition is called ‘acquired
amusia’10–15. Similarly, in ‘congenital amusia’16, individuals suffer
from lifelong difficulties with music but can recognize the lyrics of
familiar songs even though they are unable to recognize the tune that
usually accompanies them17.

Most people are experts at recognizing spoken words, but amateurs
at recognizing music. It might therefore be argued that there is no spe-
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cific module for recognizing music, but just a general auditory recog-
nition module; when that is damaged, amateur abilities such as music
recognition suffer more than expert abilities such as speech recogni-
tion. This account predicts that one will not find people in whom
brain damage has impaired the ability to recognize spoken words
while sparing the ability to recognize music. But such cases do exist:
non-musicians may lose their ability to recognize spoken words yet
remain able to recognize music18–20 (Table 1). Similarly, brain-
damaged patients who are afflicted with verbal agnosia (or word deaf-
ness), and hence have lost their ability to recognize spoken words, can
be normal at recognizing nonverbal sounds, including music21–23

(Table 1). The existence of such cases of selective impairment and
sparing of musical abilities is incompatible with the claim that there is
a single processing system responsible for the recognition of speech,
music and environmental sounds. Rather, the evidence points to the
existence of at least two distinct processing modules: one for music
and one for speech.

Modular architecture of music processing
The study of neurological deficits has revealed far more about music
processing than merely that there is a mental module specific to the
processing of music. The model in Fig. 1 shows the functional archi-
tecture of music processing that has been derived from case studies of
specific music impairments in brain-damaged patients (see ref. 24 for
earlier versions of this model). In this model, a neurological anomaly
could either damage a processing component (box) or interfere with
the flow of information (arrow) between components.

Two modular aspects of the model deserve comment. First, the indi-
viduation of each box or arrow in the model arises from the study of its
breakdown pattern in a brain-damaged patient. This fact confers upon
the individuated component the modular property of neuroanatomi-
cal separability. Second, the model proposes various music-processing
modules, each of which is concerned with a particular information-
processing operation that contributes to the overall system.

An example of a distinct music-specific component inside the music
module is the system concerned with tonal encoding of pitch (Fig. 1).

Central to pitch organization is the perception of pitch along musical
scales. A musical scale refers to the use of a small subset of pitches
(usually seven) in a given musical piece. Scale tones are not equivalent
and are organized around a central tone, called the tonic. Usually, a
musical piece starts and ends on the tonic. The other scale tones are
arranged in a hierarchy of importance or stability, with the fifth scale
tone and the third scale tone being most closely related to the tonic.
The remaining scale tones are less related to the tonic, and the non-
scale tones are the least related; the latter often sound like ‘foreign’
tones. This tonal hierarchical organization of pitch facilitates percep-
tion, memory and performance of music by creating expectancies25.

There is substantial empirical evidence that listeners use this tonal
knowledge in music perception automatically26,27. Tonal organization
of pitch applies to most types of music, but it does not occur in pro-
cessing other sound patterns, such as speech. Although the commonly
used scales differ somewhat from culture to culture, most musical
scales use pitches of unequal spacing that are organized around 5–7
focal pitches28 and afford the building of pitch hierarchies29. The tonal
encoding module seems to exploit musical predispositions, as infants
show enhanced processing for scales with unequal pitch steps30 (see
accompanying review31 in this issue). Tonal encoding can be selec-
tively impaired by brain damage; for example, some patients are no
longer able to judge melodic closure properly and suffer from a severe
reduction in pitch memory32. In a recent functional neuroimaging
study, Janata and collaborators33 point to the rostromedial prefrontal
cortex as a likely brain substrate for the ‘tonal encoding’ module.

Unlike the tonal encoding module, other component music-
processing modules might not be restricted to just music (blue boxes
in Fig. 1). For example, the ‘contour analysis’ component, which
abstracts the pitch trajectories (in terms of pitch direction between
adjacent tones without regard to the precise pitch intervals), could
conceivably be involved in processing speech intonation as well as
music (see accompanying review34 in this issue).

The model in Fig. 1 takes as input any acoustic stimulus that can be
attributed to a unique source. This implies that auditory segregation of
sound mixtures into distinct sound sources first occurs in an acoustic
analysis module whose domain is all auditory stimuli, not just music.
The output of this early acoustic analysis might be, for example, a rep-
resentation of the song “Happy Birthday.” In that case, the lyric com-
ponent of the song is assumed to be processed in parallel in the
language processing system (right of the figure). We suppose that acti-
vation of the music or the language processing modules is determined
by the aspect of the input to which a module is tuned35. That is, there is
no ‘gatekeeper’ that decides which part of the auditory pattern should
be sent to the musical modules and which part should be sent to the
language system. All the information contained in the song line, for
example, would be sent to all modules. Only the modules that are spe-
cialized for the extraction of such information will respond—just as
the retina does not respond when a sound wave passes through it, nor
the cochlea when light shines upon it.

The musical input modules are organized in two parallel and largely
independent subsystems whose functions are to specify, respectively,
the pitch content (the melodic contour and the tonal functions of the
successive pitch intervals) and the temporal content, by representing
the metric organization as well as the rhythmic structure of the succes-
sive durations. The ‘rhythm analysis’ component deals with the seg-
mentation of the ongoing sequence into temporal groups on the basis
of durational values without regard to periodicity; the ‘meter analysis’
component extracts an underlying temporal regularity or beat, corre-
sponding to periodic alternation between strong and weak beats. The
strong beats generally correspond to the spontaneous tapping of the

Table 1  Case reports of selective impairment and selective sparing in the
auditory recognition of words, tunes and other meaningful sounds

Reports Auditory domains

Tunes Words Other familiar sounds

C.N. and G.L.10 – + + (+ voices)

I.R.11 – + +

H.V.12 – + +

H.J.13

1 case14

K.B.15

11 cases of congenital amusia17 – + + (+ voices)

1 case18 + – +

1 case, during recovery19 + – +

N.S.20 + – +

G.L.21 + – –

1 case22 + – –

1 case23 + – –

+ normal; – impaired.
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foot (thus a direct connection to tapping in
Fig. 1; see accompanying review36 in this
issue). Both the melodic and temporal path-
ways send their respective outputs to either
the ‘musical lexicon’ or the ‘emotion expres-
sion analysis’ component. The musical lexicon
is a representational system that contains all
the representations of the specific musical
phrases to which one has been exposed during
one’s lifetime. The same system also keeps a
record of any new incoming musical input.
Accordingly, successful recognition of a famil-
iar tune depends on a selection procedure that
takes place in the musical lexicon. The output of the musical lexicon
can feed two different components, depending on task requirements.
If the goal is to sing a song like “Happy Birthday,” the corresponding
melody, represented in the musical lexicon, will be paired with its asso-
ciated lyrics that are stored in the phonological lexicon and will be
tightly integrated and planned in a way that is suitable for vocal pro-
duction. If the task requires retrieving nonmusical information about
a musical selection, such as naming the tune or retrieving a related
experience from memory, the associated knowledge stored in the ‘asso-
ciative memories’ component will be invoked.

In parallel with memory processes, but independently, the percep-
tual modules will feed their outputs into an emotion expression analy-
sis component, allowing the listener to recognize and experience the
emotion expressed by the music37. This emotional pathway also con-
tributes to recognition via the musical lexicon. Emotion expression
analysis is a pivotal processing component because music has the
power to elicit strong emotional responses. It takes as input emotion-
specific musical features, such as mode (e.g. major or minor) and
tempo (e.g. slow or fast) as computed by the melodic and temporal
pathways, respectively. What is currently unclear is to what extent this
emotion expression analysis component is specific to music as
opposed to being involved in more general kinds of emotional pro-
cessing. A patient who could recognize pieces of music but could not
respond emotionally to them, while being able to respond emotionally
to other media, would be informative here.

In sum, we propose a modular functional architecture for music
processing that comprises several component modules. Our model
(Fig. 1) also describes the pathways of information flow among these
component modules. The characterization of each box and arrow rep-
resented in the model has been provided by the detailed study of
brain-damaged patients with selective impairments or preservations
of particular musical abilities (for review, see ref. 24). The inclusion of

three new output modules again stems from the study of neurological
patients: singing performance in aphasic patients38 and tapping abili-
ties in adults suffering from congenital amusia39. Thus, our proposed
modular architecture for processing music provides a plausible frame-
work for further investigating the neural mechanisms of music pro-
cessing.
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