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In Vivo Evidence of Structural
Brain Asymmetry in Musicians

Gottfried Schlaug,*t Lutz Jancke, Yanxiong Huang,
Helmuth Steinmetz*

Certain human talents, such as musical ability, have been associated with left-right
differences in brain structure and function. In vivo magnetic resonance morphometry of
the brain in musicians was used to measure the anatomical asymmetry of the planum
temporale, a brain area containing auditory association cortex and previously shown to
be a marker of structural and functional asymmetry. Musicians with perfect pitch revealed
stronger leftward planum temporale asymmetry than nonmusicians or musicians without
perfect pitch. The results indicate that outstanding musical ability is associated with
increased leftward asymmetry of cortex subserving music-related functions.

A number of studies have demonstrated
that the left hemisphere of the brain is
dominant in the production and compre-
hension of language in the vast majority of
persons (1). Similar attempts to localize
musical functions have yielded conflicting
data, mainly because studies of amusia-
that is, impairment of musical skills as a
result of cerebral lesions-have failed to
reveal structural-functional maps similar to
those of language organization (2). This
situation has now changed with the intro-
duction of positron emission tomography
(PET) to measure regional cerebral blood
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flow and metabolism during the processing
of verbal and nonverbal stimuli. Whereas
left hemispheric activation sites are seen
during phonological, lexical, or semantic
language task performance (3), right hemi-
spheric preponderances are found for me-
lodic and pitch perception, at least in mu-
sically naive subjects (4). However, process-

ing strategies may differ among individuals
depending on prior musical experience (or
giftedness), as suggested by PET experi-
ments (5) and by behavioral (6) and neu-
rophysiological (7) studies.

These proposed functional differences
have only been related to anecdotal post-
mortem descriptions of gross anatomical
differences in the brains of eminent musi-
cians compared to nonmusicians as well as
pronounced interhemispheric asymmetry
mainly of temporal lobe structures (8). In
an unselected postmortem sample that es-
tablished an anatomical marker for cere-
bral asymmetry, the size of a well-defined
portion of the posterior superior temporal
gyrus, termed the planum temporale (PT),
was larger on the left side in the majority
of brains (9). Asymmetry of the PT has
been increasingly accepted as a substrate
of left hemisphere dominance for lan-
guage-related auditory processing because
(i) asymmetry of the PT first appears in
higher primates, suggesting a relation with
the evolution of language (10); (ii) the
left PT coincides with the center of Wer-
nicke's speech area as identified by lesion
studies (11); (iii) macroscopic asymmetry
of the PT correlates with cytoarchitecton-
ic asymmetry of association cortices
thought to play a role in higher order
auditory processing (12); and (iv) asym-
metry of the PT is correlated with hand-
edness, with left-handers being anatomi-
cally more symmetrical (13).

Rightward deviation from the usual pat-
tem of cerebral asymmetry may be associat-
ed with increased giftedness for talents for
which the right hemisphere is assumed to
be important (14). This proposed relation
has been partially substantiated by connec-
tions between nonrighthandedness, atypical
visuospatial lateralization, spatial gifted-
ness, and musical talent (15). We have
used high-resolution in vivo magnetic res-
onance morphometry of the PT as an in-
dex of laterality in 30 healthy, right-hand-
ed professional musicians and compared
the results with those from nonmusicians
matched for age, sex, and handedness
(16-18).

Table 1. Means (±SD) for age, degree of anatomical planum temporale asymmetry (bPT), and size of left
and right PT determined with in vivo magnetic resonance morphometry in healthy, right-handed musi-
cians and nonmusicians.

PT size (mm2)
Subjects Age SPTt

Left Right

Musicians (n = 30) 26 (4) -0.36 (0.25)* 1063 (189) 750 (187)
Perfect pitch (n = 11) 27 (5) -0.57 (0.21)** 1097 (202) 611 (105)
No perfect pitch (n = 19) 26 (4) -0.23 (0.17) 1043 (183) 830 (178)

Nonmusicians (n = 30) 26 (3) -0.23 (0.24) 896 (236) 736 (263)
tNegative values indicate leftward asymmetry of the PT (16). *P = 0.028 compared to nonmusicians. --P <
0.001 compared to musicians without perfect pitch (21).
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Fig. 1. Brain surface projec-
tions of the right and left pla-
num temporale (PT) in a mu-
sician with perfect pitch (up-
per) and a nonmusician
(lower). (Left) Views from the
right; (middle) views from
above with the left brain
hemispheres to the reader's
right; (right) views from the
left. The images were recon-
structed from stacks of 128
contiguous sagittal magnet-
ic resonance image slices
where the PT had been
highlighted on each slice.
The WPT values are -0.77
for the musician and -0.39
for the nonmusician (16).

We found that the PT was more lateral-
ized to the left in musicians (P = 0.028).
Possession of perfect pitch explained most
of the variation in the degree of PT asym-
metry among musicians (P < 0.001) (19-
21). Musicians with perfect pitch showed
stronger leftward PT asymmetry compared
to other musicians, whereas musicians with-
out perfect pitch did not differ from con-
trols (Table 1 and Fig. 1).

Our finding of increased leftward PT
asymmetry among musicians should be seen
in the following context. First, PET has
demonstrated that the posterior superior
temporal region, including the PT, is in-
volved in music perception (5). Second, in
one postmortem myeloarchitectonic study
of a musician with melody deafness after
circumscribed brain injury, the lesion was
centered on the left PT, sparing the primary
auditory and inferior parietal cortex (22).
Third, gross left-right asymmetry of the PT,
as measured in our study, reflects cytoarchi-
tectonic asymmetries of auditory associa-
tion areas located on the PT (12). Thus, our
morphometric findings in musicians may
suggest that the functional capacity of cor-
tex shown to subserve musical functions
increases with leftward structural asymme-
try of this neural system. This result lends
anatomical support to behavioral and elec-
trophysiological evidence of a difference in
lateralization of musical processing between
musicians and nonmusicians, with more
left-lateralized representation in musicians
(6, 7). Our data concur with the general
concept that, because of time constraints of
interhemispheric transfer, efficiency of neu-
ronal assemblies is expected to increase
with the number of elements clustered in
one hemisphere (23). In fact, this principle
may be the essence of hemispheric special-
ization (23).

Our study does not reveal the mecha-
nism creating structural asymmetry. Left-
ward PT asymmetry usually appears in
the human fetus between the 29th and

31st gestational week (24), so that prena-
tal factors are likely to play a role. Never-
theless, considering that the maturation
of fiber tracts and intracortical neuropil,
two presumed determinants of gyral shape
(25), are still progressing by the age of
seven (26), it remains uncertain whether
gross anatomy may also be susceptible to
some postnatal plastic change, such as
in response to specific stimulation (20).
Our study demonstrates that individual
variability in cognitive performance can
covary with features of external brain
morphology.
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TECHNICAL COMMENTS _

Mammalian Vestibular Hair Cell Regeneration

Birds and mammals are born with a full
complement of inner ear hair cells, which
were thought to be irreversibly lost when
damaged (1). It is now well known that
birds have the capacity to regenerate hair
cells in their auditory and vestibular or-
gans after damage by acoustic trauma or
ototoxic drugs (2) and that these new cells
can mediate functional recovery (3). Re-
cent studies by A. Forge et al. (4) and by
M. E. Warchol et al. (5) suggest that the
vestibular epithelium of the mature mam-
malian inner ear may also have the ability
to produce new hair cells by renewed mi-
totic activity in response to aminoglyco-
side injury in vivo (4) and in vitro (5).
However, these reports do not provide
convincing evidence that the DNA label-
ing, seen at a low frequency in vitro, is the
source of the apparent recovery of hair cell
apical surfaces observed in vivo.

Our study was undertaken to determine
if cell division can be shown to give rise to
new hair cells in normal mature mamma-
lian vestibular epithelium or during the
first 6 weeks after aminoglycoside ototox-
icity. Three groups of young mature albino
Hartley guinea pigs were used. The exper-
imental animals in each group were treat-
ed with a single transtympanic injection of
the ototoxic aminoglycoside, gentamicin,
in the left ear (6). Animals in each control
group were given an identical volume of
0.9% saline. The first group of animals was
killed after 1 to 16 weeks and used for light
microscopic evaluation of damage pro-
duced in the sensory epithelium of the

utricle (7). The second group, killed after
1 to 16 weeks, was used for scanning elec-
tron microscopy (SEM) (8) in order to
compare our results with those of Forge et
al. (4). In animals of the third group, an
osmotic pump filled with [3Hlthymidine
was implanted under the skin of the back
with its output leading to a cannula in-
serted into the perilymphatic space before
treatment with aminoglycoside (9). These
animals were killed after 1 to 16 weeks
(10).

Hair cell damage and loss was evident in
the light microscopic sections and SEM
analyses of tissue from gentamicin-treated
animals (Fig. 1). Experimental animals had
fewer hair cells than controls, particularly
in the striolar region. Other signs or damage
observed by light microscopy of SEM in-
cluded nuclear pyknosis, nuclear swelling,
vaccuolization, cytoplasmic extrusion, and

stereocilia fusion. The extent of damage was
variable at all survival times. At 1 or 2
weeks after gentamicin treatment, hair cell
injury was limited primarily to the striolar
region in 10 of 16 animals examined by
SEM. In three of the animals damage was
observed over a larger area, extending from
the striola toward the periphery of the or-
gan. Complete destruction of the sensory
hair cells was observed in the remaining
three animals. Four weeks after gentamicin
administration, one animal displayed hair
cell damage extending out from the striolar
region; in the other animal blebbing and
fusion of stereocilia were seen over the en-
tire surface of the sensory epithelium. In the
animal killed 4 months after gentamicin,
the surface of the utricle continued to show
damaged stereocilia bundles throughout the
entire sensory epithelium. The average
length of the sensory epithelium and the
linear support cell density remained con-
stant between the control and experimental
animals (Table 1) (1 1). However, the linear
hair cell density was 51 to 85% lower in
experimental animals than controls (P <
0.001).

Table 1. Results of treatment with gentamicin on guinea pig utricle: Length of sensory epithelium, hair cell
density, and support cell density. Measurements are averages (+ standard deviation).

Animal Treatment Sensory Hair cell Support cell
number (weeks) epithelium length density density

(x 0.1 mm) (per 0.1 mm) (per 0.1 mm)

94-01 1 7.2 (±2.0) 1.6 (+0.7) 11.6 (+4.6)
94-13 1 9.3 (±2.1) 3.4 (±0.8) 9.9 (±3.1)
93-42 1 7.2 (±1.6) 2.6 (±1.4) 10.4 (±1.5)
94-06 4 7.4 (±1.5) 1.3 (±1.5) 8.4 (±1.5)
94-05 6 8.7 (+2.0) 1.6 (+0.6) 7.1 (±1.6)
93-55 6 7.2 (±1.9) 4.3 (±0.8) 10.7 (±2.8)
93-57 0* 7.4 (±1.6) 8.7 (±1.7) 12.6 (±3.3)
93-38 6* 8.9 (+2.1) 6.6 (+1.9) 10.2 (±1.2)

*Control group received no gentamicin.
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