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The Geometry of Musical Chords
Dmitri Tymoczko

A musical chord can be represented as a point in a geometrical space called an orbifold. Line
segments represent mappings from the notes of one chord to those of another. Composers in a
wide range of styles have exploited the non-Euclidean geometry of these spaces, typically by using
short line segments between structurally similar chords. Such line segments exist only when chords
are nearly symmetrical under translation, reflection, or permutation. Paradigmatically consonant
and dissonant chords possess different near-symmetries and suggest different musical uses.

W
estern music lies at the intersection of

two seemingly independent disci-

plines: harmony and counterpoint.

Harmony delimits the acceptable chords (simul-

taneously occurring notes) and chord sequences.

Counterpoint (or voice leading) is the technique

of connecting the individual notes in a series of

chords so as to form simultaneous melodies.

Chords are usually connected so that these lines

(or voices) move independently (not all in the

same direction by the same amount), efficiently

(by short distances), and without voice crossings

(along nonintersecting paths) (Fig. 1, A to C).

These features facilitate musical performance,

engage explicit aesthetic norms (1, 2), and en-

able listeners to distinguish multiple simulta-

neous melodies (3).

How is it that Western music can satisfy

harmonic and contrapuntal constraints at once?

What determines whether two chords can be

connected by efficient voice leading? Musi-

cians have been investigating these questions

for almost three centuries. The circle of fifths

(fig. S1), first published in 1728 (4), depicts

efficient voice leadings among the 12 major

scales. The Tonnetz (fig. S2), originating with

Euler in 1739, represents efficient voice leadings

among the 24 major and minor triads (2, 5).

Recent work (5–13) investigates efficient voice

leading in a variety of special cases. Despite

tantalizing hints (6–10), however, no theory has

articulated general principles explaining when

and why efficient voice leading is possible.

This report provides such a theory, describing

geometrical spaces in which points represent

chords and line segments represent voice lead-

ings between their endpoints. These spaces

show us precisely how harmony and counter-

point are related.

Human pitch perception is both logarithmic

and periodic: Frequencies f and 2f are heard to

be separated by a single distance (the octave)

and to possess the same quality or chroma. To

model the logarithmic aspect of pitch percep-

tion, I associate a pitch_s fundamental frequen-

cy f with a real number p according to the

equation

p 0 69 þ 12 log2ð f=440Þ ð1Þ

The result is a linear space (pitch space) in which

octaves have size 12, semitones (the distance

between adjacent keys on a piano) have size 1,

and middle C is assigned the number 60.

Distance in this space reflects physical distance

on keyboard instruments, orthographical dis-

tance in Western musical notation, and musical

distance as measured in psychological experi-

ments (14, 15).

Musically, the chroma of a note is often

more important than its octave. It is therefore

useful to identify all pitches p and p þ 12. The

result is a circular quotient space (pitch-class

space) that mathematicians call R /12Z (fig.

S3). (For a glossary of terms and symbols, see

table S1.) Points in this space (pitch classes)

provide numerical alternatives to the familiar

letter-names of Western music theory: C 0 0,

C /D> 0 1, D 0 2, D quarter-tone sharp 0 2.5,

etc. Western music typically uses only a

discrete lattice of points in this space. Here I

consider the more general, continuous case.

This is because the symmetrical chords that

influence voice-leading behavior need not lie

on the discrete lattice.

The content of a collection of notes is often

more important than their order. Chords can

therefore be modeled as multisets of either

pitches or pitch classes. (BChord[ will hence-

forth refer to a multiset of pitch classes unless

otherwise noted.) The musical term Btranspo-

sition[ is synonymous with the mathematical

term Btranslation[ and is represented by addi-

tion in pitch or pitch-class space. Transposi-

tionally related chords are the same up to

translation; thus, the C major chord, AC, E,

GZ or A0, 4, 7Z, is transpositionally related to

the F major chord, AF, A, CZ or A5, 9, 0Z,

because A5, 9, 0Z K A0 þ 5, 4 þ 5, 7 þ 5Z
modulo 12Z. The musical term Binversion[ is

synonymous with the mathematical term

Breflection[ and corresponds to subtraction

from a constant value. Inversionally related

chords are the same up to reflection; thus, the C

major chord is inversionally related to the C

minor chord AC, E>, GZ, or A0, 3, 7Z, because

A0, 3, 7Z K A7 – 7, 7 – 4, 7 – 0Z modulo 12Z.

Musically, transposition and inversion are im-

portant because they preserve the character of a

chord: Transpositionally related chords sound

extremely similar, inversionally related chords

fairly so (movie S1).

A voice leading between two multisets Ax
1
,

x
2
, I, x

m
Z and Ay

1
, y

2
, I, y

n
Z is a multiset of

ordered pairs (x
i
, y

j
), such that every member of

each multiset is in some pair. A trivial voice

leading contains only pairs of the form (x, x).

The notation (x
1
, x

2
, I, x

n
) Y ( y

1
, y

2
, I, y

n
)

identifies the voice leading that associates the

corresponding items in each list. Thus, the

voice leading (C, C, E, G) Y (B, D, F, G)

associates C with B, C with D, E with F, and G

with G. Music theorists have proposed numerous

ways of measuring voice-leading size. Rather

than adopting one, I will require only that a

measure satisfy a few constraints reflecting

widely acknowledged features of Western music

(16). These constraints make it possible to iden-

tify, in polynomial time, a minimal voice leading

REPORTS

Department of Music, Princeton University, Princeton, NJ
08544, USA, and Radcliffe Institute for Advanced Study,
34 Concord Avenue, Cambridge, MA 02138, USA. E-mail:
dmitri@princeton.edu

A B C D

Fig. 1. Efficient voice leading between transpositionally and inversionally related chords. These
progressions exploit three near-symmetries: transposition (A and B), inversion (C), and permutation (D).
Sources: a common 18th-century upper-voice voice-leading pattern (A), a common jazz-piano voice-
leading pattern, which omits chord roots and fifths and adds ninths and thirteenths (B), Wagner’s
Parsifal (C), Debussy’s Prélude à l’après-midi d’un faune (C), and contemporary atonal voice leading in
the style of Ligeti and Lutoslawski (D) (soundfile S1). Chord labels refer to unordered sets of pitch
classes and do not indicate register.
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(not necessarily bijective) between arbitrary

chords (16). Every music-theoretical measure

of voice-leading size satisfies these constraints.

I now describe the geometry of musical

chords. An ordered sequence of n pitches can

be represented as a point in Rn (fig. S4).

Directed line segments in this space represent

voice leadings. A measure of voice-leading size

assigns lengths to these line segments. I will

use quotient spaces to model the way listeners

abstract from octave and order information. To

model an ordered sequence of n pitch classes,

form the quotient space (R/12Z)n, also known

as the n-torus Tn. To model unordered n-note

chords of pitch classes, identify all points (x
1
,

x
2
, I x

n
) and (xs(1)

, xs(2)
, I xs(n)

), where s is

any permutation. The result is the global-

quotient orbifold Tn/S
n

(17, 18), the n-torus Tn

modulo the symmetric group S
n
. It contains

singularities at which the local topology is not

that of Rn.

Figure 2 shows the orbifold T2/S
2
, the space

of unordered pairs of pitch classes. It is a

MPbius strip, a square whose left edge is given

a half twist and identified with its right. The

orbifold is singular at its top and bottom edges,

which act like mirrors (18). Any bijective voice

leading between pairs of pitches or pairs of

pitch classes can be associated with a path on

Fig. 2 (movie S2). Measures of voice-leading

size determine these paths_ lengths. They are

the images of line segments in the parent spaces

Tn and Rn, and are either line segments in the

orbifold or Breflected[ line segments that

bounce off its singular edges. For example,

the voice leading (C, D>) Y (D>, C) reflects off

the orbifold_s upper mirror boundary (Fig. 2).

Generalizing to higher dimensions is straight-

forward. To construct the orbifold Tn/S
n
, take an

n-dimensional prism whose base is an (n – 1)

simplex, twist the base so as to cyclically per-

mute its vertices, and identify it with the oppo-

site face (figs. S5 and S6) (16). The boundaries

of the orbifold are singular, acting as mirrors and

containing chords with duplicate pitch classes.

Chords that divide the octave evenly lie at the

center of the orbifold and are surrounded by the

familiar sonorities of Western tonality. Voice

leadings parallel to the height coordinate of the

prism act as transpositions. A free computer

program written by the author allows readers to

explore these spaces (19).

In many Western styles, it is desirable to

find efficient, independent voice leadings be-

tween transpositionally or inversionally related

chords. The progressions in Fig. 1 are all of this

type (movie S3). A chord can participate in

such progressions only if it is nearly symmet-

rical under transposition, permutation, or in-

version (16). I conclude by describing these

symmetries, explaining how they are embodied

in the orbifolds_ geometry, and showing how

they have been exploited by Western composers.

A chord is transpositionally symmetrical (T-

symmetrical) if it either divides the octave into

equal parts or is the union of equally sized

subsets that do so (20). Nearly T-symmetrical

chords are close to these T-symmetrical chords.

Both types of chord can be linked to at least

some of their transpositions by efficient bijec-

tive voice leadings. As one moves toward the

center of the orbifold, chords become increas-

ingly T-symmetrical and can be linked to their

transpositions by increasingly efficient bijective

voice leading. The perfectly even chord at the

center of the orbifold can be linked to all of its

transpositions by the smallest possible bijective

voice leading; a related result covers discrete

pitch-class spaces (16). Efficient voice leadings

between perfectly T-symmetrical chords are

typically not independent. Thus, composers

have reason to prefer near T-symmetry to exact

T-symmetry.

It follows that the acoustically consonant

chords of traditional Western music can be con-

nected by efficient voice leading. Acoustic con-

sonance is incompletely understood; however,

theorists have long agreed that chords approx-

imating the first few consecutive elements of

the harmonic series are particularly consonant,

at least when played with harmonic tones (21).

Because elements n to 2n of the harmonic series

evenly divide an octave in frequency space, they

divide the octave nearly evenly in log-frequency

space. These chords are therefore clustered near

the center of the orbifolds (Table 1) and can

typically be linked by efficient, independent
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Fig. 2. The orbifold T2/S2. C 0 0, C 0 1, etc., with B> 0 t, and B 0 e. The left edge is given a half
twist and identified with the right. The voice leadings (C, D>) Y (D>, C) and (C, G) Y (C , F ) are
shown; the first reflects off the singular boundary.

Table 1. Common sonorities in Western tonal music. The center column lists the best equal-
tempered approximation to the first n pitch classes of the harmonic series; the right column lists
other good approximations. All divide the octave evenly or nearly evenly.

Size Best approximation Other approximations

2 notes C, G C, F
3 notes C, E, G C, E>, G>

C, E>, G
C, E, G

4 notes C, E, G, B> C, E>, G>, A
C, E>, G>, B>
C, E>, G, B>
C, E, G, B

5 notes C, D, E, G, B> C, D, E, G, A
C, D, E, G, B

6 notes C, D, E, F , G, B> C, D, E>, F, G, B>
C, D, E, F , G , B>

7 notes C, D, E, F , G, A, B> C, D, E, F, G, A, B>
C, D, E>, F , G, A, B>
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voice leadings. Traditional tonal music exploits

this possibility (Fig. 1, A to C, and movie S4).

This central feature of Western counterpoint is

made possible by composers_ interest in the

harmonic property of acoustic consonance.

A chord with duplicate pitch classes is

permutationally symmetrical (P-symmetrical)

because there is some nontrivial permutation

of its notes that is a trivial voice leading. These

chords lie on the singular boundaries of the

orbifolds. Nearly P-symmetrical chords, such as

AE, F, G>Z, are near these chords and contain

several notes that are clustered close together.

Efficient voice leadings permuting the clustered

notes bounce off the nearby boundaries (Fig. 2

and movies S2 and S4). Such voice leadings

can be independent and nontrivial. Trivial voice

leadings are musically inert; therefore, as with

T-symmetry, composers have reason to prefer

near P-symmetry to exact P-symmetry.

Nearly P-symmetrical chords such as AB, C,

D>Z are considered to be extremely dissonant.

They are well-suited to static music in which

voices move by small distances within an un-

changing harmony (Fig. 1D). Such practices are

characteristic of recent atonal composition, par-

ticularly the music of Ligeti and Lutoslawski.

From the present perspective, these avant-garde

techniques are closely related to those of tradi-

tional tonality: They exploit one of three

fundamental symmetries permitting efficient,

independent voice leading between transposi-

tionally or inversionally related chords.

A chord is inversionally symmetrical

(I-symmetrical) if it is invariant under reflec-

tion in pitch-class space. Nearly I-symmetrical

chords are near these chords and can be found

throughout the orbifolds (16). For example, the

F half-diminished seventh chord A6, 9, 0, 4Z
and the F dominant seventh chord A5, 9, 0, 3Z
are related by inversion and are very close to

the I-symmetrical chord A5.5, 9, 0, 3.5Z.

Consequently, we can find an efficient voice

leading between them, (6, 9, 0, 4) Y (5, 9, 0, 3)

(Fig. 1C) (16). Nearly T-symmetrical chords,

such as the C major triad, and nearly P-

symmetrical chords, such as AC, D>, E>Z, can

also be nearly I-symmetrical. Consequently, I-

symmetry is exploited in both tonal and atonal

music. It plays a salient role in the 19th century,

particularly in the music of Schubert (22),

Wagner (23), and Debussy (Fig. 1C).

The preceding ideas can be extended in

several directions. First, one might examine in

detail how composers have exploited the geom-

etry of musical chords. Second, one could gen-

eralize the geometrical approach by considering

quotient spaces that identify transpositionally

and inversionally related chords (24). Third,

because cyclical rhythmic patterns can also be

modeled as points on Tn/S
n
, one could use these

spaces to study African and other non-Western

rhythms. Fourth, one could investigate how

distances in the orbifolds relate to perceptual

judgments of chord similarity. Finally, under-

standing the relation between harmony and

counterpoint may suggest new techniques to

contemporary composers.
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A High-Brightness Source of
Narrowband, Identical-Photon Pairs
James K. Thompson,1* Jonathan Simon,2 Huanqian Loh,1 Vladan Vuletić1

We generated narrowband pairs of nearly identical photons at a rate of 5 � 104 pairs per second
from a laser-cooled atomic ensemble inside an optical cavity. A two-photon interference
experiment demonstrated that the photons could be made 90% indistinguishable, a key
requirement for quantum information-processing protocols. Used as a conditional single-photon
source, the system operated near the fundamental limits on recovery efficiency (57%), Fourier
transform–limited bandwidth, and pair-generation-rate–limited suppression of two-photon events
(factor of 33 below the Poisson limit). Each photon had a spectral width of 1.1 megahertz, ideal for
interacting with atomic ensembles that form the basis of proposed quantum memories and logic.

T
he generation of photon pairs is useful for a

broad range of applications, from the fun-

damental Eexclusion of hidden-variable

formulations of quantum mechanics (1)^ to the

more practical Equantum cryptography (2) and

quantum computation (3)^. A key parameter de-

termining the usefulness of a particular source is its

brightness, i.e., how many photon pairs per second

are generated into a particular electromagnetic

mode and frequency bandwidth. Parametric down-

converters based on nonlinear crystals are excellent

sources of photon pairs, but they are comparatively

dim because their photon bandwidths range up to

hundreds of GHz. However, new applications are

emerging that demand large pair-generation rates

into the narrow bandwidths (5 MHz) suitable for

strong interaction of the photons with atoms and

molecules (2, 4–7).

We report the development of a source of

photon pairs with spectral brightness near fun-

damental physical limitations and approximately

three orders of magnitude greater than the best

current devices based on nonlinear crystals (8).

Unlike parametric downconverters, however,

the atomic ensemble can additionally act as a

quantum memory and store the second photon,

allowing triggered (i.e., deterministic) genera-

tion of the second photon. Triggered delays of up

to 20 ms have been demonstrated (9–15), and it

is expected that optical lattices hold the po-

tential to extend the lifetime of these quantum

memories to seconds (9). Lastly, proposed ap-

plications in quantum information (2, 3) rely on

joint measurements of single photons for which

indistinguishability is crucial for high fidelity.

We observe large degrees of indistinguish-

ability in the time-resolved interference be-

tween the two generated photons (16–19).

1Department of Physics, MIT–Harvard Center for Ultracold
Atoms, Research Laboratory of Electronics, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cam-
bridge, MA 02139, USA. 2Department of Physics, MIT–
Harvard Center for Ultracold Atoms, Harvard University, 17
Oxford Street, Cambridge, MA 02138, USA.
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